Abstract

AbstractSi ion implantation followed by thermal annealing has been used to synthesize luminescent nanometer-sized Si crystals in an amorphous Si02 matrix. Transmission electron microscopy indicates the formation of Si nanocrystals by annealing at 1100 °C, and the growth in average size of Si nanocrystals with increasing annealing time. the shape of the emission spectrum of the photoluminescence is found to be independent of both excitation energy and annealing time, while the excitation spectrum of photoluminescence increases as the photon energy increases and its shape depends on annealing time. the results indicate that the photons are absorbed by Si nanocrystals, for which the band-gap energy is modified by the quantum confinement effects, and the emission of photons is not due to direct electron-hole recombination inside Si nanocrystals but is related to defects probably at the interface between Si nanocrystals and Si02.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.