Abstract

Diabetic wound healing remains as a serious challenge for medical circles that required continuous monitoring and effective management. Herein, the glucose oxidase/carbon dots@copper-metal-organic framework-based nanofibers (GOx/CDs@MOF NFs) were proposed as a multifunctional wound dressing, aiming to visually monitor wound pH and inhibit bacterial infection. In the diabetic wound microenvironment, the GOx/CDs@MOF NFs could convert endogenous glucose into hydroxyl radial (•OH) through the cascade catalytic reaction. In vivo and vitro experimental results confirmed that the GOx/CDs@MOF NFs could efficiently kill bacteria and promote wound healing. Additionally, CDs as a pH fluorescent indicator endowed GOx/CDs@MOF NFs with sensitive and reversible fluorescent sensing behavior to wound pH, and these visual images could also be captured by smartphones and transformed into RGB color mode (red, green, blue) values, allowing for onsite evaluation of the wound status. This multifunctional wound dressing provides a smart and effective solution for diabetic wound management and takes an immeasurable step toward the development of the next generation of digitally visualized wound dressings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.