Abstract

Despite the huge contribution of membrane-based brine and wastewater purification systems in today’s life, biofouling still affects sustainability of membrane engineering. Aimed at reducing membrane modules wastage, the need to study biofouling monitoring as one of contributory factors stemmed from the short time between initial attachment and irreversible biofoulant adhesion. Hence, a membrane for monitoring is introduced to determine the right cleaning time by using fluorescent sensing as a non-destructive and scalable approach. The classical solid-state emissive fluorophore, tetraphenylethylene (TPE), was introduced as a sustainable, safe and sensitive fluorescent indicator in order to show the potential of the method, and polyethersulfone (PES) and nonsolvent-induced phase separation method, the most popular material and method, are used to fabricate membrane in industry and academia. Since the employed filler has an aggregation-induced emission (AIE) characteristic, it can track the biofouling throughout the operation. The fabricated membranes have certain characterizations (i.e. morphology assessment, flux, antibiogram, flow cytometry, surface free energy, and protein adsorption) which indicate that hybrid membrane with 5 wt % of TPE has identical biofouling activity compared to neat PES membrane and its optimal luminescence properties make it an appropriate candidate for non-destructive and online biofouling monitoring.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.