Abstract

Luminescent Eu3+-doped SrF2 nanoparticles were synthesized using microwave-assisted synthesis. Their surfaces were modified either by polyethylene glycol or mercaptopropionic acid to enhance their dispersibility in aqueous media and colloidal formation. X-ray diffraction analysis confirmed single-phase cubic structure in both types of hydrophilic-modified Sr0.9Eu0.1F2 luminescent powders. The average crystallite size of nanoparticles is found to be ∼13 nm. Scanning electron microscopy of the representative PEG2000-modified sample revealed that particles form agglomerates composed of densely packed nanoparticles. The microstructure at a local level was investigated by transmission electron microscopy showing the presence of sphere-like nanoparticles with an average particle size of 12.5 nm and 14 nm for PEG-modified and MPA-modified Sr0.9Eu0.1F2, respectively. Both PEG2000 and MPA-modified Sr0.9Eu0.1F2 water dispersions show strong red Eu3+ emission under 405 nm excitation that is quenched in the presence of the primary NP fertilizer, ammonium dihydrogen phosphate, NH4H2PO4. The limit of detection was calculated to be ∼19 mM for both hydrophilic-modified Sr0.9Eu0.1F2 luminescent nanoparticles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call