Abstract

We report the experimental observation of radiative recombination from Rydberg excitons in a two-dimensional semiconductor, monolayer WSe2, encapsulated in hexagonal boron nitride. Excitonic emission up to the 4 s excited state is directly observed in photoluminescence spectroscopy in an out-of-plane magnetic field up to 31 T. We confirm the progressively larger exciton size for higher energy excited states through diamagnetic shift measurements. This also enables us to estimate the 1 s exciton binding energy to be about 170 meV, which is significantly smaller than most previous reports. The Zeeman shift of the 1 s to 3 s states, from both luminescence and absorption measurements, exhibits a monotonic increase of the g-factor, reflecting nontrivial magnetic-dipole-moment differences between ground and excited exciton states. This systematic evolution of magnetic dipole moments is theoretically explained from the spreading of the Rydberg states in momentum space.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.