Abstract

The Mn-doped CdS nanocrystals encapsulated by carbon (Cd1−xMnxS/C) were synthesized by a one-step, kinetically controlled, solid-state reaction under autogenic pressure at elevated temperatures. The ∼50 nm wurtzite Cd1−xMnxS core was encapsulated by a 5−11 nm disordered carbon shell, and with the increase in Mn concentration, a gradual change from isotropic nanocrystals to one-dimensional nanorods was observed. Electron paramagnetic resonance studies showed that Mn2+ could be efficiently doped into the CdS lattice up to a Mn:Cd atomic ratio of 0.012. The 0.9−1.8 atomic % manganese-doped CdS samples were found to be ferromagnetic at room temperature, and the magnetic moment did not saturate even at 2 K, likely due to the coexistence of superparamagnetic fractions and antiferromagnetic coupling between the Mn2+ spins. The lowest-doped samples (Mn:Cd = 0.009 and 0.012) display the highest magnetic moments (4.43 ± 0.04 and 4.52 ± 0.04 μB/Mn), respectively. The more concentrated samples exhibit weaker magnetic...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.