Abstract

Cerium doped di-calcium magnesium di-silicate phosphor namely Ca2MgSi2O7:Ce3+ phosphor was prepared by the solid state reaction method. The crystal structure of sintered phosphor was an akermanite type structure which belongs to the tetragonal crystallography. The chemical composition of sintered phosphor was confirmed by energy dispersive X-ray spectroscopy. Thermoluminescence kinetics parameters [activation energy (E), frequency factor (s) and order of the kinetics (b)] of discussed phosphor was evaluated by the peak shape method. Under the ultraviolet excitation (327 nm), two well known main luminescence bands with the wavelength at 373 and 393 nm was composed of a broad band peaking at 385 nm, belonging to the broad emission band which emits violet-blue color. This broad band emission in Ce3+ ion is observed due to 5d–4f allowed transition. Mechanoluminescence (ML) intensity of Ca2MgSi2O7:Ce3+ phosphor increases linearly with increasing impact velocity of the moving piston which suggests that prepared phosphor can be used as sensors to detect the stress of an object. The time of the peak ML intensity and the decay rate did not change significantly with respect to increasing impact velocity of the moving piston. Thus, the present investigation indicates the piezo-electricity was responsible to produce ML in prepared phosphor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call