Abstract

The tetrapod ZnO nanostructures are synthesized on the Si (100) substrates using the chemical vapor deposition (CVD) method at 1000 °C. Each nanostructure has four arms which are about 3–10 μm in length and 0.2–1.5 μm in diameter. Further analyses on structure demonstrate that the tetrapod ZnO nanostructures have single crystalline wurtzite hexagonal structure preferentially oriented in c-axis. The photoluminescence (PL) measurements of the tetrapod ZnO nanostructures revealed a UV peak at 382 nm corresponding to the free exciton emission, and a green peak at 523 nm arising from deep level emission. For comparative analysis, cathodoluminescence (CL) spectra obtained from different regions of an individual tetrapod are investigated. Moreover, a possible growth mechanism of the tetrapod ZnO nanostructures is also discussed based on the experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.