Abstract

Gadolinium sodium silicoborate glasses doped with samarium ion (Sm:GNSB) are prepared by the melt quenching technique. The glasses are studied for their physical, optical, and luminescence properties. The density, molar volume, and refractive index of glass are investigated as a function of Sm2O3 concentrations. Addition of Sm3+ ions in the glass matrix shows several absorption peaks in the visible and near‐infrared region, verified by the absorption spectra. The energy transfer from Gd3+ to Sm3+ is observed by photoluminescence (PL) emission spectra, which illustrates the strongest emission occurring at 600 nm (4G5/2 → 6H7/2). The PL decay time of 600 nm emission under 403 nm excitation decreases with increasing Sm2O3 concentrations. The color coordinates of the International Commission on Illumination chromaticity show different shades of orange color under different excitations. The result of radioluminescence shows a similar trend to PL emission spectra. Glasses doped with Sm3+ ions find potential use as an orange color‐emitting optoelectronic device application.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call