Abstract

The optical properties of InGaN/GaN light-emitting diodes (LEDs) grown at various temperatures were investigated using photoluminescence (PL) and time-resolved PL spectroscopies. The indium inhomogeneity generated localized states in InGaN/GaN quantum wells, and these affected the carrier dynamics. InGaN/GaN LED samples containing different indium contents were grown at temperatures of 900, 876, and 820 °C, resulting in violet, blue, and green emission, respectively. The violet LED sample exhibited the strongest PL intensity and the shortest PL decay time. This finding was attributed to an enhanced overlap of the electron and the hole wavefunctions, attributable to a reduced quantum-confined Stark effect due to the low indium contents in the violet LED. The PL decay times became longer with increasing emission wavelength, which can be explained by carrier transfer from weakly localized states to strongly localized states. These results indicate that the luminescence properties and the carrier dynamics of InGaN/GaN LEDs are affected by the growth temperature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.