Abstract

Endohedrally doped clusters form a large category of cage clusters, with unique structures, diverse elemental compositions, and highly tunable electronic structures and physisochemical properties. They have been widely achieved in laboratory and may serve as functional building blocks for assembling new supermolecular structures and devices. In this paper, for the first time, we disclosed the luminescence properties of endohedrally doped group-IV clusters by time-dependent density functional theory calculations. A total of 64 cage clusters have been explored in terms of stability, emission wavelength, and the energy difference between the first excited singlet and triplet states. The key geometric and electronic factors governing the photophysical properties of these cage clusters were unveiled, to provide crucial insights for crafting atomically precise nanoclusters for optical and optoelectronic applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.