Abstract
A Dysprosium doped di-calcium di-aluminium silicate phosphor emitting long-lasting white light was prepared and investigated. Phosphors were synthesized by combustion-assisted method. The effect of doping concentration on the crystal structure and luminescence properties of Ca2Al2SiO7:Dy3+ phosphors were investigated. The phase structure, surface morphology, particle size, elemental analysis was analyzed by using X-ray diffraction (XRD), transmission electron microscope (TEM), Scanning electron microscopy (SEM) and Energy dispersive X-ray spectroscopy (EDX) techniques. X-ray diffraction (XRD) profiles showed that all peaks could be attributed to the tetragonal Ca2Al2SiO7 phase when the sample was annealed at 1100 °C. The increase in TL intensity indicates that the concentration of traps increases with UV irradiation. Under the UV-excitation, the Thermoluminescence (TL) emission spectra of Ca2Al2SiO7:Dy3+ phosphor shows the characteristic emission of Dy3+ peaking at 484 nm (blue), 583 nm (yellow) and 680 nm (red), originating from the transitions of 4F9/2 → 6H15/2, 4F9/2 → 6H13/2 and 4F9/2 → 6H11/2. Photoluminescence (PL) decay has also reported and it indicates that Ca2Al2SiO7:Dy3+ phosphor contains fast decay and slow decay process. The peak of Mechanoluminescence (ML) intensity increases linearly with increasing impact velocity of the moving piston. The possible mechanism of Thermoluminescence (TL), Photoluminescence (PL) and Mechanoluminescence (ML) of this white light emitting long lasting phosphor is also investigated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.