Abstract

In this work, we investigate visible emission properties of dysprosium-doped yttrium aluminum garnet (YAG) waveguides prepared by the liquid phase epitaxy (LPE) method, which allowed obtaining samples of activator concentrations ranging from 0.2 at% up to ca. 18 at%. This unique set of Dy:YAG/YAG waveguides has been carefully examined by means of highly resolved laser spectroscopy to explore the luminescence properties in the visible (yellow–blue) part of spectrum. In particular, the low-temperature absorption spectra have been recorded and analyzed, giving a more detailed information on energy levels’ positions in these crystals. The concentration-dependant emission spectra and fluorescence dynamics profiles have been collected under direct excitation, enabling analysis of multi-ion processes responsible for concentration quenching. This, in turn, enabled optimization of activator concentration with respect to yellow emission efficiency. Additionally, the possible IR to visible up-conversion pathways have been discussed, giving a starting point for further investigations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.