Abstract

Heteroatom doping has become an important method to enhance the performance of traditional carbon dots in modern times. Selenium (Se) is a nonmetallic trace element with excellent redox properties and is therefore essential for health. Previous studies have mainly used pure chemicals as selenium sources to prepare selenium-doped carbon dots (Se-CDs), but the precursor pure chemicals have the disadvantages of being expensive, difficult to obtain, toxic, and having low fluorescence yields of the synthesised Se-CDs. Fortunately, our team achieved successful synthesis of selenium carbon dots, exhibiting excellent luminescence and biocompatibility through a one-step hydrothermal method using selenium-enriched natural plant Cardamine, as an alternative to selenium chemicals. This approach aims to address the limitations and high costs associated with Se-CDs precursors. Electron spin resonance spectroscopy (ESR) and cellular antioxidant tests have confirmed the protective ability of Se-CDs against oxidative damage induced by excessive reactive oxygen species (ROS). A new concept and method for synthesizing selenium carbon dots on the basis of biomass, a rationale for the antioxidant effects on human health, and a wide range of development and application possibilities were offered in this work.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.