Abstract

Eu3+ doped CaF2 and SrF2 nanoparticles were synthesized through a facile hydrothermal technique, using citrate ions as capping agents and Na+ or K+ as charge compensator ions. A proper tuning of the reaction time can modulate the nanoparticle size, from few to several tens of nanometers. Analysis of EXAFS spectra indicate that the Eu3+ ions enter into the fluorite CaF2 and SrF2 structure as substitutional defects on the metal site. Laser site selective spectroscopy demonstrates that the Eu3+ ions are mainly accommodated in two sites with different symmetries. The relative site distribution for lanthanide ions depends on the nanoparticle size, and higher symmetry Eu3+ sites are prevalent for bigger nanoparticles. Eu3+ ions in high symmetry sites present lifetimes of the 5D0 level around 27 ms, among the longest lifetimes found in the literature for Eu3+ activated materials. As a proof of concept of possible use of the Eu3+ activated alkaline-earth fluoride nanoparticles in nanomedicine, the red luminescenc...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.