Abstract

Abstract Luminescence of disordered (amorphous) semiconductors is due to a different microscopic mechanism compared to those being active in the luminescence of crystalline counterparts with long-range order. Electron and hole tail states, originating from dangling bonds, play the decisive role. Features typical for the amorphous semiconductor luminescence are discussed, namely: peculiar temperature dependence driven by the demarcation energy and distribution of luminescence decay times. Two theoretical models describing spectral shape of the emission band are examined: the phonon broadening model and the disorder broadening model. Theoretical band shapes are compared with experimental spectra found in amorphous elemental semiconductors. The concept of geminate and non-geminate electron–hole pairs is briefly debated. Multiple nonradiative recombination paths are mentioned as well as luminescence of impurities and defects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.