Abstract

Photoluminescence spectra of CaWO4 doped with Pr3+ and Tb3+ obtained at high hydrostatic pressures up to 315 kbar applied in a diamond anvil cell (DAC) are presented. The intensities of the luminescence from the 3P0 state of Pr3+ and from the 5D3 state of Tb3+ decreased with increasing pressure. At pressures greater than 50 kbar, the 1D2 → 3HJ transitions in Pr3+ and the 5D4 → 7FJ transitions in Tb3+ dominated the spectra. At pressures greater than 100 kbar, only emissions from the lower excited states were observed. At pressures greater than 150 kbar, luminescence from the 1D2 and 5D4 states also decreased with increasing pressure, and at a pressure of 315 kbar for CaWO4:Pr3+ and 190 kbar for CaWO4:Tb3+, the emissions related to the Pr3+ and Tb3+ were quenched. These effects were related to the influence of impurity trapped excitons (ITEs) on the efficiency of the f–f emission in the Pr3+ and Tb3+ ions. Analysis of the emission spectra collected at different pressures allowed the energies of the ground states of the Pr3+ and Tb3+ ions with respect to the band edges of the CaWO4 host to be estimated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call