Abstract

Self-assembled Er3+, Yb3+ doped Y2O3 colloidal nanodiscs were synthesized via a digestive ripening process using oleic acid and oleylamine as organic surfactants, and NaCl as the structure-directing agent. X-ray powder diffraction confirms the formation of cubic yttrium oxide, regardless of the doping concentration, although this affects to the crystallinity of the samples. Transmission electron microscopy (TEM) and high-resolution transimission electron microscopy (HRTEM) images reveal that these nanodiscs tend to self-assemble in fiber-like structures on the grids, with an average diameter of 20 nm, thicknesses down to the unit cell, and lengths of several micrometers. The Er3+, Yb3+ doped Y2O3 nanodiscs were tested as luminescent nanothermometers operating in the visible region. Upon excitation at 980 nm, three emission bands were generated at 525 nm, 550 nm, and 650–690 nm, assigned to 2H11/2 → 4I15/2, 4S3/2 → 4I15/2 and 4F9/2 → 4I15/2 electronic transitions of Er3+ ions, respectively. A relative thermal sensitivity of 1.11% K−1 and a temperature uncertainty of 0.44 K at room temperature were determined for these thermometers. However, the possibility of using them as primary luminescent thermometers was ruled out by the important amount of heat released by the four-photons upconversion mechanism for the generation of the green light in the 4 mol% Er3+ and 4 mol% Yb3+ doped Y2O3 nanodiscs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.