Abstract
Luminescence lifetime imaging plays an important role in distinguishing the luminescence decay rates in time-resolved luminescence imaging. However, traditional imaging instruments used for detecting lifetimes within milliseconds would be time-consuming when imaging ultra-long luminescence lifetimes over subseconds. Herein, we present an accessible and simple optical system for detecting lifetimes of persistent luminescence. A smartphone integrated with a UV LED, a dichroic mirror, and a lens was used for recording the persistent luminescence. With only a few seconds of data acquisition, a luminescence lifetime image could be processed from the video by exponential fitting of the gray level of each pixel to the delay time. Since this approach only requires single excitation, no synchronous control is needed, greatly simplifying the apparatus and saving the cost. The apparatus was successfully used for ultra-long luminescence lifetime imaging of mouse tissue dyed with a persistent luminescence molecule. This miniaturized apparatus exhibits huge potentiality in time-resolved luminescence imaging for luminescence study and biological detection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.