Abstract

ABSTRACTWe have recently observed spectrally resolved vibronic structure and luminescence intermittency from nanometer-size porous silicon nanocrystals. In this study we examine the quantum efficiency of a single nanoparticle and show that emitting nanoparticles do so with near unity quantum efficiency. This result suggests that the emission from porous Si nanoparticles, and thus bulk porous Si, results from a small number of high quantum efficiency emitters. In our previous work we have shown that our nanoparticles contain more than one coupled chromophore. In order to examine these effects more closely we employ several spectroscopy and microscopy techniques including: 1) single-particle spectroscopy, 2) shear-force microscopy, and 3) time-resolved spectroscopy, on a colloidal suspension of size-selected, surface-oxidized nanoparticles. In addition we apply statistical techniques to provide a more complete picture of the coupling between chromophores in a given nanoparticle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.