Abstract
We have fabricated quantum dots by locally straining ${\mathrm{In}}_{\mathit{x}}$${\mathrm{Ga}}_{1\mathrm{\ensuremath{-}}\mathit{x}}$As quantum wells with self-organized growth of nanometer-scale InP stressors on the sample surface. The structure is completed in a single growth run using metalorganic vapor-phase epitaxy. Photoluminescence from the dots is redshifted by up to 105 meV from the quantum-well peak due to the lateral confinement of excitons. Clearly resolved luminescence peaks from three excited states separated by 16--20 meV are observed when the quantum well is placed at the depth of 1--10 nm from the surface of the sample. The observed redshift and peak separation are in agreement with simple calculations using a finite-element method and two-dimensional parabolic potential model. This structure is easily fabricated and offers a great potential for the optical study of relaxation and recombination phenomena.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.