Abstract

Weak stimulated emission cross-section of rare earth ions (REIs) as dopants inside various glass hosts are disadvantageous for practical applications and needs improvement. We determine the mechanism of Titania (TiO2) nanoparticles (TNPs) mediated Surface Plasmon Resonance (SPR) assisted modification in the spectral properties of tellurite glass doped with Erbium (Er3+) ions. Transparent and thermally stable glass samples with varying TNPs contents are synthesized using melt-quenching technique. TEM images revealed the existence of TNPs with average size ranged from 16 to 26 nm. Glass containing 0.4 mol% of TNPs displayed an enhancement in the Raman signal by a factor of 2.25, 1.83, 1.98, 1.56 and 3.58 for the bands centered at 388, 495, 673, 758, and 845 cm-1, which is attributed to the SPR assisted effects. Absorption spectra of TNPs embedded glass (devoid of erbium ions) manifested two surface plasmon (SP) bands at 552 and 580 nm. Up-conversion (UC) PL spectra showed three prominent bands centered at 525, 545, and 660 nm due to the Er3+ ion transition from the excited states to the ground state. Furthermore, glass containing 0.4 mol% of TiNPs exhibited an intensity enhancement by a factor of 30, and 28.57 (green bands) and 19.60 (red band), which are ascribed to the generation of strong local electric field mediated by SPR effect of TNPs situated in the vicinity of Er3+ ion. The presence of TNPs surface plasmon is asserted to be responsible for the alteration of the Er3+ ions absorbance and modification of the UC emission intensity. A correlation between SPR and Surface Enhance Raman Scattering (SERS) is established.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.