Abstract

Spectral features modification of rare earth (RE) doped tellurite glasses via controlled manipulation of metallic nanoparticles (NPs) is the current challenge in achieving enhanced lasing action. Triggering the localized surface plasmon resonance (SPR) of NPs in the glass generates tremendous applied interests especially in solid state lasers and nanophotonics. Despite several promising features of RE doped zinc-boro-tellurite glass, the low absorption and emission cross-section of RE ions prohibit them from fabricating efficient lasers. This drawback needed to overcome and significant enhancement of spectral features is required. Co-doping by rare earths and/or embedding metallic NPs (acts as sensitizer) are demonstrated to be the alternative route to surmount such shortcomings. Series of glass samples with composition 74TeO2–15B2O3–10ZnO– 1Sm2O3 – (x)Ag, where 0 ≤ x ≤ 0.1 mol% (in excess) are prepared using melt quenching method and the impacts of silver (Ag) NPs concentrations in altering their photoluminescence properties are inspected. The XRD spectra confirmed the amorphous nature of prepared glasses and the presence of Ag NPs are evidenced in EDX spectra. TEM micrographs revealed the distribution of Ag NPs with average size 7.2 nm. Absorption spectra revealed eight bands which most intense between 6F11/2 and 6F1/2. Photoluminescence spectra exhibited three prominent peaks corresponding to the transition from the excited state 4G5/2 to 6H5/2, 6H7/2, and 6H9/2 states, respectively. Our observation may be useful for the development of tellurite glass based nanophotonic devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call