Abstract

Mn4+ non-equivalent doped fluorides with high color purity red emission and relatively short decay time are crucial for wide color gamut displays and emerging applications, whereas the low quantum efficiency (QE) restrains their further applications. Herein, the luminescence of Mn4+ non-equivalent doped fluoride K2NaAlF6:Mn4+ (KNAF:Mn4+) is significantly enhanced via a heterovalent co-doping strategy, where the luminescence intensity is obviously increased by ∼85%, but the decay time is almost unchanged. The experimental characterization and density functional theory (DFT) calculations provide an understanding of the luminescence enhancement mechanism of heterovalent co-doping, which is enabled by simultaneously improving the stability of Mn4+ and reducing the number of quenching centers (defects and impurities). Combining the short-decay-time (τ = 4.03 ms) emission KNAF:Mn4+, Mg2+ and long-decay-time (τ = 9.23 ms) emission K2SiF6:Mn4+, a novel monochromatic multiplexing mode in the millisecond order is presented, which can be decoded not only in high-efficiency by a digital camera but also with a high security. This work provides a new optical multiplexing for the information security applications and also inspires the design of high-efficiency Mn4+-activated luminescent materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.