Abstract

In this work, a numerical approach to investigate the room temperature luminescence emission from core/shell nanowire is presented where GaN quantum discs (QDiscs), periodically distributed in AlxGa1−xN nanowire, is considered as core and AlxGa1−xN as shell. Thin disc shaped (Ring shaped) n-doped region has been placed at the GaN/ AlxGa1−xN (AlxGa1−xN /air) interface in AlxGa1−xN region in axial (radial) directions. To obtain energy levels and related wavefunctions, self-consistent procedure has been employed to solve Schrodinger-Poisson equations with considering the spontaneous and piezoelectric polarization. Then luminescence spectrum is studied in details to recognize the parameters influent in luminescence. The results show that the amount of doping, size of QDiscs and theirs numbers have remarkable effects on the band to band luminescence emission. Our numerical calculations gives some insights into the luminescence emission of core/shell nanowire and exhibits a useful tool to analyze findings in experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call