Abstract
A general kinetic theory is used to explain the shapes of photoionized sample luminescence curves perturbed by thermal jumps (Δ ∼ 1 K, rise time ∼ 1 s). The samples studied are photoactivated organic vitreous solutions of TMPD/MCH 10−3 M and TMPD/3-MP 10−3 M. The experiments are performed within a temperature range (63–91 K) which includes the glass transition temperature Tg. It is shown that there is a slow diffusion of the trapped electrons towards the cation and competition between thermal detrapping and tunneling. The tunneling/thermal detrapping ratio Y is not time dependent during an isothermal luminescence and is only slowly temperature dependent if T ≤ Ty. Ty is very close to Tg. For T > Ty, Y decreases rapidly with T. The activation energy for thermal detrapping shows a maximum when the temperature reaches [Formula: see text] The glass transition temperature Tg may therefore be defined empirically as:[Formula: see text]Finally we obtain a glassy matrix relaxation time, τ, which decreases with T.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.