Abstract

In this work a study on some thermoluminescence characteristics of Li2BaP2O7:Dy phosphor is presented. The phosphor was synthesized by solid state diffusion method and characterized for its phase purity by X-ray diffraction (XRD). FT-IR spectrum was also carried out to confirm the presence of phosphate family and vibrations corresponding to P–O–P group. Spectroscopic investigation was approached through photoluminescence (PL) and thermoluminescence (TL). PL emission spectrum of Dy3+ ions corresponding to 4F9/2→6H13/2 (483nm) and 4F9/2→6H15/2 (574nm) transitions is revealed under 351nm excitation wavelength. This characteristic emission confirms the presence of Dy3+ ions in the Li2BaP2O7 host matrix. To induce TL properties in Li2BaP2O7:Dy phosphor was irradiated with C5+ ion beams and gamma rays (60Co). A nearly simple glow curve was observed for Li2BaP2O7:Dy under two different excitation sources. TL response is almost linear over a wide range. Average absorbed dose (D¯) and mean linear energy transfer (LET‾) of C5+ ion beams in Li2BaP2O7:Dy have also been calculated. Values of parameters like E and S known as trap depth and frequency factor respectively were obtained by using TLanal computer program. Also SRIM based calculations were performed to study the effect of C5+ ion beams on the samples of Li2BaP2O7:Dy. SRIM calculations show that Ba2+ vacancies are highest in number. Till date no such luminescence information on Li2BaP2O7:Dy phosphor is available.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.