Abstract

Zero-dimensional metal halides have attracted much attention due to their attractive photoelectric properties. Here, we propose a new strategy of synthesizing metal halides crystals by recrystallization in water. The as-synthesized Cs2 InCl5 (H2 O)-orange crystals are dissolved and recrystallized in water (Cs2 InCl5 (H2 O)-blue), with its photoluminescence (PL) changing from orange to blue, both of which are derived from self-trapping excitons (STEs). The time-resolved photoluminescence (TRPL) spectrum of Cs2 InCl5 (H2 O)-blue shows that it has an ultralong lifetime up to milliseconds (τ=52.98 ms), which is expected to be applied in biological sensors. The photoluminescence quantum yield (PLQY) increases from 2.25% to 11.61% in the self-assembly process. By using a post-doping method, the PL of crystals turns into red when we introduce Mn2+ as dopant while there is no obvious change upon using a traditional solvent-thermal method. Recrystallization in water and post-doping provide a new perspective for the synthesis and doping of metal halides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.