Abstract
All inorganic perovskites with different halide constituent have recently truncated the eyes of researchers owing to their intriguing optoelectronic features and thereby their usage perspective in photovoltaic applications, light emitting didoes and lasing devices. Here, adopting a simple, environment benign ambient conditioned chemical synthesis approach we have realized high quality cesium lead halide perovskite (CsPbCl3) cube. The crystallinity and morphological characterizations were performed by X-ray diffraction and field emission scanning electron microscope measurements respectively while the chemical composition were examined via energy-dispersive X-ray spectroscopic measurement. The as synthesized cubes crystallized in cubic phase and exhibited intense photoluminescence emission at ∼418 nm with a small FWHM value and prolonged photoluminescence decay time∼41 ns. Besides photoluminescence, these cubes displayed strong cathodoluminescence also. Accelerating voltage dependent cathodoluminescence study showed discernable differences in luminescence behaviour. We expect this synthetic strategy to be promising as it can be easily scaled up to produce bulk quantity nanoforms of different inorganic perovskites in subtle manner for the realization of several types of nanoscale devices.All inorganic perovskites with different halide constituent have recently truncated the eyes of researchers owing to their intriguing optoelectronic features and thereby their usage perspective in photovoltaic applications, light emitting didoes and lasing devices. Here, adopting a simple, environment benign ambient conditioned chemical synthesis approach we have realized high quality cesium lead halide perovskite (CsPbCl3) cube. The crystallinity and morphological characterizations were performed by X-ray diffraction and field emission scanning electron microscope measurements respectively while the chemical composition were examined via energy-dispersive X-ray spectroscopic measurement. The as synthesized cubes crystallized in cubic phase and exhibited intense photoluminescence emission at ∼418 nm with a small FWHM value and prolonged photoluminescence decay time∼41 ns. Besides photoluminescence, these cubes displayed strong cathodoluminescence also. Accelerating voltage dependent cathodoluminescence st...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.