Abstract

The exploitation of the dramatic negative solvatochromism of the [Ru(bipy)(CN)(4)] moiety (bipy = 2,2'-bipyridine) allows a change in solvent to reverse the direction of photoinduced energy transfer (PEnT) in two related dinuclear complexes. Both dyads consist of a [Ru(bpyam)(2)L(n)](2+) (Ru-bpyam) unit (bpyam = 4,4'-diethylamido-2,2'-bipyridine; L(n) = bis-bipyridyl-based bridging ligand) and a [Ru(L(n))(CN)(4)](2-) (Ru-CN) unit. Both termini have IR-active spectroscopic handles (amide carbonyl or cyanide, respectively) allowing the excited-state dynamics to be studied by time-resolved IR (TRIR) spectroscopy. One dyad (1) contains a relatively rigid exoditopic macrocyclic bis-bipyridyl bridging ligand (L(1)) and the other (2) contains a more flexible bis-bipyridyl bridging ligand with only one covalent linkage between the two bipyridyl binding sites (L(2)). The conformational effects on PEnT rates in these dyads are probed using a combination of luminescence and TRIR studies. In both 1 and 2 in D(2)O it is demonstrated that Ru-CN --> Ru-bpyam PEnT occurs (PEnT time scales were in the range 10 ps-3 ns) because the (3)MLCT energy of the Ru-CN terminus is higher than that of the Ru-bpyam terminus. Changing the solvent from D(2)O to CH(3)CN results in lowering the (3)MLCT energy of the Ru-CN unit below that of the Ru-bpyam unit such that in both dyads a reversal in the direction of PEnT to Ru-bpyam --> Ru-CN (time scales of 10 ps-2 ns) occurs. Complex kinetic behavior results from the presence of a dark (3)MLCT excited state formulated as {(bpyam)(2)Ru(3+)(L(n*-))} and by the presence of multiple conformers in solution which have different Ru...Ru separations giving rise to different energy transfer rates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call