Abstract
Emission and excitation spectra, luminescence polarization and decay kinetics have been studied for CsI:Pb crystals in the 0.36–300 K temperature range. The origin of the excited states responsible for the optical characteristics has been discussed. It has been concluded that the doublet ≈3.70 eV absorption (excitation) band is caused by the electronic transitions into the Pb 2+ triplet state split due to the presence of a cation vacancy near a Pb 2+ ion, while the higher-energy bands are of the charge-transfer origin. Like in CsI:Tl, four emission bands of CsI:Pb have been found to belong to the main luminescence centres. Two emission bands, peaking at 3.1 and 2.6 eV, are suggested to arise from the triplet relaxed excited state of a Pb 2+ ion. Two visible emission bands, peaking at 2.58 and 2.23 eV, are interpreted as the luminescence of an exciton localized near the Pb 2+ ion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.