Abstract

Harnessing sunlight via photosensitizing molecules is key for novel optical applications and solar-to-chemical energy conversion. Exploiting abundant metals such as iron is attractive but becomes challenging due to typically fast nonradiative relaxation processes. In this work, we report on the luminescence and excited-state reactivity of the heteroleptic [FeIII(pzTp)(CN)3]- complex (pzTp = tetrakis(pyrazolyl)borate), which incorporates a σ-donating trispyrazolyl chelate ligand and three monodentate σ-donating and π-accepting cyanide ligands. Contrary to the nonemissive [Fe(CN)6]3-, a broad emission band centered at 600 nm at room temperature has been recorded for the heteroleptic analogue attributed to the radiative deactivation from a 2LMCT excited state with a luminescence quantum yield of 0.02% and a lifetime of 80 ps in chloroform at room temperature. Bimolecular reactivity of the 2LMCT excited state was successfully applied to different alcohol photo-oxidation, identifying a cyanide-H bonding as a key reaction intermediate. Finally, this research demonstrated the exciting potential of [Fe(pzTp)(CN)3]- as a photo-oxidant, paving the way for further exploration and development of emissive Fe-based photosensitizers competent for photochemical transformations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.