Abstract

AbstractA reproducible route for the preparation of high‐quality CdSe–ZnS‐doped titania and zirconia waveguides is presented. The optical properties of the resultant composite materials are found to be sensitive to the semiconducting properties of the host matrix. Titania‐based composites are seen to be inherently photounstable because of photoelectron injection into the bulk matrix and subsequent nanocrystal (NC) oxidation. In comparison, zirconia composites are significantly more robust with high photoluminescence (PL) retained for annealing temperatures up to 300 °C. Both titania and zirconia composite waveguides exhibit amplified stimulated emission (ASE); however only zirconia‐based waveguides exhibit long‐term photostability (loss of less than 30 % ASE intensity after more than 40 min continuous excitation). We conclude that the low electron affinity of zirconia and its inherent high refractive index makes it an ideal candidate for NC‐based optical waveguides.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.