Abstract

Studies have revealed that textures suppress the processing of the shapes of contours they surround. One manifestation of texture-surround suppression is the reduction in the magnitude of adaptation-induced contour-shape aftereffects when the adaptor contour is surrounded by a texture. Here we utilize this phenomenon to investigate the nature of the first-order inputs to texture-surround suppression of contour shape by examining its selectivity to luminance polarity and the magnitude of luminance contrast. Stimuli were constructed from sinusoidal-shaped strings of either "bright" or "dark" elongated Gaussians. Observers adapted to pairs of contours, and the aftereffect was measured as the shift in the apparent shape frequency of subsequently presented test contours. We found that the suppression of the contour-shape aftereffect by a surround texture made of similar contours was maximal when the adaptor's center and surround contours were of the same polarity, revealing polarity specificity of the surround-suppression effect. We also measured the effect of varying the relative contrasts of the adaptor's center and surround and found that the reduction in the contour-shape aftereffect was determined by the surround-to-center contrast ratio. Finally, we measured the selectivity to luminance polarity of the texture-shape aftereffect itself and found that it was reduced when the adaptors and tests were of opposite luminance polarity. We conclude that texture-surround suppression of contour-shape as well as texture-shape processing itself depend on "on-off" luminance-polarity channel interactions. These selectivities may constitute an important neural substrate underlying efficient figure-ground segregation and image segmentation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call