Abstract
The first aim of this study was to characterize the luminal contents and their micellar phase after the administration of a heterogeneous liquid meal to healthy adults. The second aim was to evaluate the impact of micellar lipids and coarse lipid particles on danazol flux through intestinal monolayers. A third aim was to compare the micellar composition in the upper small intestine with the composition of fed state simulating intestinal fluid (FeSSIF-V2), a medium that has been proposed for investigating dissolution of poorly soluble drugs in the fed state. Danazol (150 mg), predissolved in the olive oil portion of the meal, was administered via the gastric port of a two-lumen tube to the antrum of eight adults. Aspirates from the ligament of Treitz [collected up to 4 h postdosing (~15 mL every 30 min)] were characterized physicochemically. Comparison of these characteristics with FeSSIF-V2 indicates that FeSSIF-V2 is an appropriate medium for evaluating drug solubilization in the luminal micellar phase in the fed state. Individual aspirates and their corresponding micellar phases were also diluted with aqueous transport medium and subjected to Caco-2 cell permeation experiments. Permeability coefficients for danazol in the diluted aspirates were smaller than those for the diluted micellar phases, which in turn were similar to those for aqueous transport medium. The high danazol concentrations overcompensated the reduced permeability coefficient values in the diluted aspirates in terms of total drug flux. We conclude that drug dissolved in the coarse lipid particles formed after administration of a triglyceride solution can directly contribute to the flux of lipophilic drugs across the intestinal mucosa.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.