Abstract

The aim of the present study was to quantify and compare the luminal and basolateral binding and uptake of 125I-labeled insulin-like growth factor I (IGF-I) by means of 1) isolated, perfused, proximal tubules combined with electron microscope autoradiography and 2) luminal and basolateral membrane vesicles from rabbit proximal tubules. 125I-IGF-I was added to isolated perfused proximal tubules for 30 min in concentrations of 1.6-3.9 micrograms/l to either the perfusate or the bath. The luminal and basolateral uptake in 30 min averaged 447 and 410 fg/mm, respectively. About 20% of the luminally absorbed IGF-I was digested. Addition of excess unlabeled IGF-I (10(-7) M) to the bath produced complete inhibition of the basolateral binding/uptake, whereas no inhibition of the luminal uptake was seen. Electron microscope autoradiography showed that IGF-I after luminal endocytic uptake to a large extent was transported into lysosomes. After basolateral exposure the major portion of the grains was found over the basolateral cell membrane; however, a significant amount was located over endocytic vacuoles and lysosomes in both apical and basal parts of the cells. In both luminal and basolateral membrane vesicles, single-class, high-affinity binding sites for IGF-I were found with dissociation constants of 6.3 and 5.7 nM, respectively. Specific binding capacities averaged 2.7 and 25.7 pmol IGF-I/mg protein in luminal and basolateral vesicles. The biochemical data suggest an asymmetric distribution of specific IGF-I receptors in the luminal and basolateral membranes, with a greater abundance of receptors in the latter. The extensive basolateral endocytic binding/uptake of IGF-I compared with that of the luminal in isolated perfused tubules differs considerably from the processing of other peptide hormones.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.