Abstract
Lumen and media–adventitia (MA) borders in intravascular ultrasound (IVUS) images are critical for assessing the dimensions of vascular structures and providing plaque information in the diagnosis and navigation of vascular interventions. However, manual delineation of the lumen and MA borders is an intricate and time-consuming process. In this paper, a texture-enhanced deformable model (TEDM) is proposed to accurately detect these borders by incorporating texture information with the morphological factors of deformable model. An ensemble support vector machine classifier is used to classify IVUS pixels presented by texture features into different tissue types. The image regionalization maps of different tissue types are further used for texture enhancement modules in the TEDM. The proposed TEDM method has been tested on 1500 images from 15 clinical IVUS datasets by comparing with the manual delineations. Evaluation results demonstrate that our method can accurately detect lumen and MA surfaces with small surface distance errors of 0.17 and 0.19 mm, respectively. Accurate segmentation results provide 2D measurements of MA/lumen areas and 3D vessel visualizations for vascular interventions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.