Abstract

Recurrent changes recorded in LULC in Guna Tana watershed are a long-standing problem due to the increase in urbanization and agricultural lands. This research aims at identifying and predicting frequent changes observed using support vector machines (SVM) for supervised classification and cellular automata-based artificial neural network (CA-ANN) models for prediction in the quantum geographic information systems (QGIS) plugin MOLUSCE. Multi-temporal spatial Landsat 5 Thematic Mapper (TM) imageries, Enhanced Thematic Mapper plus 7 (ETM+), and Landsat 8 Operational Land Imager (OLI) images were used to find the acute problem the watershed is facing. Accuracy was assessed using the confusion matrix in ArcGIS 10.4 produced from ground truth data and Google Earth Pro. The results acquired from kappa statistics for 1991, 2007, and 2021 were 0.78, 0.83, and 0.88 respectively. The change detection trend indicates that urban land cover has an increasing trend throughout the entire period. In the future trend, agriculture land may shoot up to 86.79% and 86.78% of land use class in 2035 and 2049. Grassland may attenuate by 0.03% but the forest land will substantially diminish by 0.01% from 2035 to 2049. The increase of land specifically was observed in agriculture from 3128.4 to 3130 km2. Judicious planning and proper execution may resolve the water management issues incurred in the basin to secure the watershed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.