Abstract
AbstractPrediction-based compression methods, like prediction by partial matching, achieve a remarkable compression ratio, especially for texts written in natural language. However, they are not efficient in terms of speed. Part of the problem concerns the usage of dynamic entropy encoding, which is considerably slower than the static alternatives. In this paper, we propose a prediction-based compression method that decouples the context model from the frequency model. The separation allows static entropy encoding to be used without a significant overhead in the meta-data embedded in the compressed data. The result is a reasonably efficient algorithm that is particularly suited for small textual files, as the experiments show. We also show it is relatively easy to built strategies designed to handle specific cases, like the compression of files whose symbols are only locally frequent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.