Abstract

A surface-attached hydrogel made from an entangled network of poly(acrylamide–acrylic acid) random copolymer chains has been chemically bonded to the surface of polydimethylsiloxane (PDMS) and demonstrated ultralow friction in aqueous environments. The hydrogel polymer, preformed in solution, possesses a high molecular weight and exists as an entangled network under the solution concentrations employed. Surface attachment is accomplished through chemical modification of the PDMS surface followed by subsequent reaction with acrylic acid moieties along the polymer backbone. The friction coefficients of untreated and hydrogel-modified PDMS surfaces were measured via microtribometry, employing both a glass probe and a novel bioprobe made from the anterior surface of a rat thoracic aorta. The unique approach to hydrogel synthesis and its attachment to PDMS succeeds in producing a robust, highly solvated polymer network of sufficient water content to enable friction coefficients as low as µ = 0.003.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.