Abstract

Tablet brittleness index (TBI) quantifies tablet fracture behavior, which strongly correlates with tablet porosity and tensile strength. The goal of this work was to quantify the influence of lubrication on tablet brittleness. Magnesium stearate was used as a lubricant. Several common tablet excipients, i.e., starch, lactose, microcrystalline cellulose (MCC), and dibasic calcium phosphate anhydrate (DCPA), and a binary mixture between lactose and MCC were studied. Tablet tensile strength (σ) and TBI at zero porosity (σ0 and TBI0) were obtained from nonlinear regression of data of all powders to evaluate the relationship between brittleness and bonding strength of pore-free tablets. The results show that lubrication by magnesium stearate led to decrease in σ0 and increase in TBI0. The effect was more profound for both a longer blending time and a higher amount of magnesium stearate. In addition, the TBI of the binary mixture was successfully predicted from the fitted parameters of lactose and MCC using the power mixing rule. Such effects of lubrication on tablet brittleness should be considered during formulation development to avoid unexpected quality issues.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call