Abstract

AbstractIn this work the purely electro-osmotic flow of a viscoelastic liquid, which obeys the simplified Phan-Thien–Tanner (sPTT) constitutive equation, is solved numerically and asymptotically by using the lubrication approximation. The analysis includes Joule heating effects caused by an imposed electric field, where the viscosity function, relaxation time and electrical conductivity of the liquid are assumed to be temperature-dependent. Owing to Joule heating effects, temperature gradients in the liquid make the fluid properties change within the microchannel, altering the electric potential and flow fields. A consequence of the above is the appearance of an induced pressure gradient along the microchannel, which in turn modifies the normal plug-like electro-osmotic velocity profiles. In addition, it is pointed out that, depending on the fluid rheology and the used values of the dimensionless parameters, the velocity, temperature and pressure profiles in the fluid are substantially modified. Also, the finite thermal conductivity of the microchannel wall was considered in the analysis. The dimensionless temperature profiles in the fluid and the microchannel wall are obtained as function of the dimensionless parameters involved in the analysis, and the interactions between the coupled momentum, thermal energy and potential electric equations are examined in detail. A comparison between the numerical predictions and the asymptotic solutions was made, and reasonable agreement was found.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.