Abstract

As the lubrication performance of sealing structures in rodless open cylinders varies with sliding velocity, the concept of a critical velocity is proposed based on the aforementioned characteristics and the lubrication performance of sealing structure is analysed. A finite-element model of sealing structure is established and the oil film load under dynamic lubrication condition is obtained. A two-dimensional theoretical model of lubrication performance in sealing structure is established based on the proposed critical velocity. The influence on critical velocity of parameters including pre-compression, geometry size and microscopic morphology is analysed. Considering surface microscopic morphology, generation of heat by friction, heat flux distribution and other factors, a three-dimensional numerical model of lubrication performance of sealing structure is established to reveal the influence of texture mechanism on lubrication performance. As concluded, with the increase of pre-compression, the lip angle and the temperature of lubrication oil, the critical velocity increases. The three-dimensional microscopic morphology of seal ring is found to pose obvious influence on critical velocity, and the isotropic microscopic morphology tends to form total lubrication under the same conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.