Abstract

AbstractThis paper describes a theoretical investigation of the rheological effects of couple stress fluids on the performance of narrow porous journal bearings. A most general modified Reynolds equation is derived for narrow porous journal bearings using the Stokes constitutive equations for couple stress fluids. The fluid in the film region and in the porous region has been modelled as a couple stress fluid. The analysis takes into account velocity slip at the porous interface using the Beavers‐Joseph criterion. A closed‐form expression for field pressure is obtained for narrow journal bearings. Eigen‐type expressions for field variations are obtained. The dimensionless load‐carrying capacity, attitude angle, and coefficient of friction are presented for different operating parameters. It is observed that narrow porous journal bearings with couple stress fluids as lubricant show a significant increase in load‐carrying capacity with reduced coefficient of friction as compared to the Newtonian case. The present study predicts the effects of the percolation of polar additives (microstructures) into the porous matrix on the bearing performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call