Abstract

The paper presents the results of an experimental investigation carried out at Mansoura University Laboratories aiming at studying the effect of change of speed, oil viscosity, and helix angle on the load carrying capacity of the oil film. A three pairs of test gears of 6 DP, 91.5 mm pitch diameter with 22.3, 33.6 and 42.25 deg helix angles were run in power circulating test rig at 100 to 3000 r.p.m. speeds and transmitting tooth load ranging from 185 to 1090 Kp. The test gears were lubricated with oils of 200, 462, and 653 cSt at 40°C kinematic viscosities. The oil film thicknesses between contacting teeth were measured by measuring the changes in capacitance between test gears and transferred to linear dimensions by calibration curves drawn by knowing the changes in capacitance through the gaps between teeth of values known through the amount of backlash. The experimental results show that; Oil film thickness decreases with tooth load, while increases with speed and viscosity of the lubricant. Oil film thickness versus helix angle give an inversed parabola for the smallest and medium tooth loads, while oil film thickness decreases with increasing the helix angle under increased tooth loads. Load carrying capacity increases with speeds and viscosity of the lubricant while decreases with increasing the helix angle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.