Abstract

Slippery lubricant-infused surfaces exhibit excellent fog-harvesting capacities compared with superhydrophobic and superhydrophilic surfaces. However, lubricant depletion is typically unavoidable under dynamic conditions, and reinfused oil is generally needed to recover the fog-harvesting capacity. Herein, an effective strategy for delaying the depletion of lubricant to prolong the service life of fog harvesting is proposed. An ultrathin transparent lubricant self-replenishing slippery surface was fabricated via facile one-step solvent evaporation polymerization. The gel film of the lubricant self-replenishing slippery surface, which was embedded with oil microdroplets, was attached to glass slides via the phase separation and evaporation of tetrahydrofuran. The gel film GFs-150 (with oil content 150 wt% of aminopropyl-terminated polydimethyl siloxane (PDMS-NH2)) exhibited superior slippery and fog-harvesting performance to other gel films. Furthermore, the slippery surfaces with the trait of oil secretion triggered by mechanical stress exhibited better fog-harvesting capabilities and longer service life than surfaces without the function of lubricant self-replenishment. The lubricant self-replenishing, ultrathin, and transparent slippery surfaces reported herein have considerable potential for applications involving narrow spaces, visualization, long service life, etc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.