Abstract
In this paper we propose a solution to the state-feedback and output-feedback stabilization problem for linear time-varying stochastic systems affected by arbitrarily large and variable input delay. It is proved that under the proposed controller the underlying stochastic process is exponentially centered and mean square bounded. The solution is given through a set of delay differential equations with cardinality proportional to the delay bound. The predictor is based on the semigroup generated by the closed-loop system in absence of delay, and its computation is described by a numerically reliable and robust method. In the deterministic case this method generates the same optimal trajectories as in the delay-less case.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.