Abstract

We report the feasibilities for revealing and diagnostics of unconventional phase singularities into optical fields, namely, the singularities of spatial coherence functions into partially coherent vortex beams. It is shown that the vortices of the spatial coherence function are comprehensively diagnosed through the strip version of the Thomas Young's interference experiment. Namely, the magnitude of a topological charge and its sign are determined, respectively, by the magnitude and the direction of bending of the Young's interference fringes, which are produced by the edge diffraction waves from the rims of an opaque strip positioned in the vortex beam. Such experiment provides complete data on the azimuthal behavior of a phase of the spatial coherence function. On the other hand, non-localized ring singularities of the spatial coherence function and of the complex degree of coherence occurring in the radial distribution of a phase are detected through conventional Young's interference experiment with two pinholes at an opaque screen. It is remarkable that the last of the mentioned coherence phase singularities takes place, when amplitude zeroes of the field are absent. Instead of this, the modulus of the complex degree of coherence vanishes alone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.