Abstract

An x-ray multilayer mirror, specially designed to produce resonant absorption at a definite angle of incidence, may be used as an angular dispersive element for refractive x-ray radiography. In this method the signal-to-noise ratio can be significantly enhanced due to suppression of the shot noise produced by the direct beam. Refraction contrast of a copper wire 75 microns in diameter and a human hair was observed using Ni/C multilayer mirror with resonant absorption at CuKa radiation. The multilayer structure consisting of 30 bilayers was designed for CuKa radiation so as to have absorbing resonance of the width of about several arc seconds at a grazing angle of 0.8 degrees. A monochromatic probe x-ray beam with a divergence of approximately 5 arc seconds was obtained from a conventional x-ray tube and a double crystal monochromator set in a strongly dispersive configuration. We have developed theoretical basis for this method, and have experimentally proven that it is possible to create critical components for its practical implementation: a multilayer mirror with resonant absorption, an x-ray imaging photon-counting detector with spatial resolution of about several micrometers, and a probe beam with the divergence of several arc seconds. This result proves the feasibility of x-ray refraction radiography using resonantly absorbing multilayer mirrors manufactured by conventional magnetron sputtering technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.