Abstract

Using both text and image content features, a hybrid image retrieval system for Word Wide Web is developed in this paper. We first use a text-based image meta-search engine to retrieve images from the Web based on the text information on the image host pages to provide an initial image set. Because of the high-speed and low cost nature of the text-based approach, we can easily retrieve a broad coverage of images with a high recall rate and a relatively low precision. An image content based ordering is then performed on the initial image set. All the images are clustered into different folders based on the image content features. In addition, the images can be re-ranked by the content features according to the user feedback. Such a design makes it truly practical to use both text and image content for image retrieval over the Internet. Experimental results confirm the efficiency of the system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.